清风细雨楼 Design By www.eepep.com

现象

大家在使用 Apache Spark 2.x 的时候可能会遇到这种现象:虽然我们的 Spark Jobs 已经全部完成了,但是我们的程序却还在执行。比如我们使用 Spark SQL 去执行一些 SQL,这个 SQL 在最后生成了大量的文件。然后我们可以看到,这个 SQL 所有的 Spark Jobs 其实已经运行完成了,但是这个查询语句还在运行。通过日志,我们可以看到 driver 节点正在一个一个地将 tasks 生成的文件移动到最终表的目录下面,当我们作业生成的文件很多的情况下,就很容易产生这种现象。本文将给大家介绍一种方法来解决这个问题。

为什么会造成这个现象

Spark 2.x 用到了 Hadoop 2.x,其将生成的文件保存到 HDFS 的时候,最后会调用了 saveAsHadoopFile,而这个函数在里面用到了 FileOutputCommitter,如下:

Apache Spark 2.0 在作业完成时却花费很长时间结束

问题就出在了 Hadoop 2.x 的 FileOutputCommitter 实现FileOutputCommitter 里面有两个值得注意的方法:commitTask 和 commitJob。在 Hadoop 2.x 的FileOutputCommitter 实现里面,mapreduce.fileoutputcommitter.algorithm.version 参数控制着 commitTask 和 commitJob 的工作方式。具体代码如下(为了说明方便,我去掉了无关紧要的语句,完整代码可以参见 FileOutputCommitter.java):

Apache Spark 2.0 在作业完成时却花费很长时间结束

大家可以看到 commitTask 方法里面,有个条件判断 algorithmVersion == 1,这个就是 mapreduce.fileoutputcommitter.algorithm.version 参数的值,默认为1;如果这个参数为1,那么在 Task 完成的时候,是将 Task 临时生成的数据移到 task 的对应目录下,然后再在 commitJob 的时候移到最终作业输出目录,而这个参数,在 Hadoop 2.x 的默认值就是 1!这也就是为什么我们看到 job 完成了,但是程序还在移动数据,从而导致整个作业尚未完成,而且最后是由 Spark 的 Driver 执行 commitJob 函数的,所以执行的慢也是有到底的。

而我们可以看到,如果我们将 mapreduce.fileoutputcommitter.algorithm.version 参数的值设置为 2,那么在 commitTask 执行的时候,就会调用 mergePaths 方法直接将 Task 生成的数据从 Task 临时目录移动到程序最后生成目录。而在执行 commitJob 的时候,直接就不用移动数据了,自然会比默认的值要快很多。

注意,其实在 Hadoop 2.7.0 之前版本,我们可以将 mapreduce.fileoutputcommitter.algorithm.version 参数设置为非1的值就可以实现这个目的,因为程序里面并没有限制这个值一定为2,。不过到了 Hadoop 2.7.0,mapreduce.fileoutputcommitter.algorithm.version 参数的值必须为1或2,具体参见 MAPREDUCE-4815。

怎么在 Spark 里面设置这个参数

问题已经找到了,我们可以在程序里面解决这个问题。有以下几种方法:

  • 直接在 conf/spark-defaults.conf 里面设置 spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version 2,这个是全局影响的。
  • 直接在 Spark 程序里面设置,spark.conf.set("mapreduce.fileoutputcommitter.algorithm.version", "2"),这个是作业级别的。
  • 如果你是使用 Dataset API 写数据到 HDFS,那么你可以这么设置 dataset.write.option("mapreduce.fileoutputcommitter.algorithm.version", "2")。

不过如果你的 Hadoop 版本为 3.x,mapreduce.fileoutputcommitter.algorithm.version 参数的默认值已经设置为2了,具体参见 MAPREDUCE-6336 和 MAPREDUCE-6406。

因为这个参数对性能有一些影响,所以到了 Spark 2.2.0,这个参数已经记录在 Spark 配置文档里面了 configuration.html,具体参见 SPARK-20107。

总结

以上所述是小编给大家介绍的Apache Spark 2.0 在作业完成时却花费很长时间结束,希望对大家有所帮助!

清风细雨楼 Design By www.eepep.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
清风细雨楼 Design By www.eepep.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。