清风细雨楼 Design By www.eepep.com
我尝试了两种方式
用opencv 对指针仪表进行读数识别,
1. 先模板匹配,然后边缘检测 + 霍夫直线
2. 按轮廓大小过滤,然后边缘检测 + 霍夫直线
两种方式对光线都非常敏感
其中第一种的应用范围更广,背景复杂一点也能识别到
个人比较喜欢这种方式
第二种的限制多一点,对背景、光线条件要求比较高
对于固定位置,且明暗变化不大的情况下,这种方式还是很有效的
先说第一个方案,第二个方式就不说了
第一种方式:模板匹配,然后边缘检测 + 霍夫直线
if __name__ == "__main__": # 加载模板 template = cv2.imread('./data/001.jpg',1) # 初始化 am = C_ammerter(template) # 运行 am.am_run() # 结束 am.close()
模板图 001.jpg
下面给出def am_run(self)函数的处理流程 (整体比较乱~~~)
其中边缘检测之前需要对图像做一些处理:
def am_run(self): while True: ret, frame = self.cap.read() if frame is None: print('video picture is none --continue ') continue gray = frame.copy() # cv2.imshow('origin', gray) # 匹配模板 框出匹配区域 image = gray.copy() maxval,t_left, b_right = self.get_match(gray) if maxval < 16000000000: # 对匹配程度做判断 print("---------------------------------------") print('matchTemplate is not enough --continue') print("---------------------------------------") result =frame image=frame else: cv2.rectangle(image, t_left, b_right, 255, 2) # 高斯除噪 kernel = np.ones((6,6), np.float32) / 36 gray_cut_filter2D = cv2.filter2D(image[t_left[1]:t_left[1] + self.h, t_left[0]:t_left[0] + self.w], -1, kernel) # 灰度图 二值化 gray_img = cv2.cvtColor(gray_cut_filter2D, cv2.COLOR_BGR2GRAY) ret, thresh1 = cv2.threshold(gray_img, 180, 255, cv2.THRESH_BINARY) # 二值化后 分割主要区域 减小干扰 模板图尺寸371*369 tm = thresh1.copy() test_main = tm[50:319, 50:321] # 边缘化检测 edges = cv2.Canny(test_main, 50, 150, apertureSize=3) # 霍夫直线 lines = cv2.HoughLines(edges, 1, np.pi / 180, 60) if lines is None: continue result = edges.copy() for line in lines[0]: rho = line[0] # 第一个元素是距离rho theta = line[1] # 第二个元素是角度theta print('distance:' + str(rho), 'theta:' + str(((theta / np.pi) * 180))) lbael_text = 'distance:' + str(round(rho))+ 'theta:' + str(round((theta / np.pi) * 180-90,2)) cv2.putText(image, lbael_text,(t_left[0],t_left[1]-12),cv2.FONT_HERSHEY_SIMPLEX,1,(0,255,0),2) if (theta > 3 * (np.pi / 3)) or (theta < (np.pi / 2)): # 从图像边界画出延长直线 # 该直线与第一行的交点 pt1 = (int(rho / np.cos(theta)), 0) # 该直线与最后一行的焦点 pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0]) # 绘制一条白线 cv2.line(result, pt1, pt2,255, 1) # print('theat >180 theta<90') else: # 水平直线 # 该直线与第一列的交点 pt1 = (0, int(rho / np.sin(theta))) # 该直线与最后一列的交点 pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta))) # 绘制一条直线 cv2.line(result, pt1, pt2, 255, 1) cv2.imshow('result', result) cv2.imshow('rectangle', image) if cv2.waitKey(1) & 0XFF == ord('q'): break
清风细雨楼 Design By www.eepep.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
清风细雨楼 Design By www.eepep.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月04日
2025年01月04日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]