一、必要的 python 模块
PyTorch 的 Vision 模块提供了图像变换的很多函数.
torchvision/transforms/functional.py
from __future__ import division import torch import sys import math from PIL import Image, ImageOps, ImageEnhance, PILLOW_VERSION try: import accimage except ImportError: accimage = None import numpy as np import numbers import collections import warnings import matplotlib as plt if sys.version_info < (3, 3): Sequence = collections.Sequence Iterable = collections.Iterable else: Sequence = collections.abc.Sequence Iterable = collections.abc.Iterable
以下图为例:
img_file = "test.jpe" img = Image.open(img_file) width, height = img.size #(750, 815) img.show()
二、PyTorch 图像变换函数
2.1 判断图像数据类型
# 图像格式检查,如,pil, tensor, numpy def _is_pil_image(img): if accimage is not None: return isinstance(img, (Image.Image, accimage.Image)) else: return isinstance(img, Image.Image) def _is_tensor_image(img): return torch.is_tensor(img) and img.ndimension() == 3 def _is_numpy_image(img): return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
# example: _is_pil_image(img) # True _is_tensor_image(img) # False _is_numpy_image(img) # False _is_numpy_image(np.array(img)) # True
2.2 to_tensor(pic)
将 PIL Image
或 nupy.ndarray
转换为 tensor
def to_tensor(pic): """ Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ if not(_is_pil_image(pic) or _is_numpy_image(pic)): raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic))) if isinstance(pic, np.ndarray): # handle numpy array img = torch.from_numpy(pic.transpose((2, 0, 1))) # backward compatibility if isinstance(img, torch.ByteTensor): return img.float().div(255) else: return img if accimage is not None and isinstance(pic, accimage.Image): nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32) pic.copyto(nppic) return torch.from_numpy(nppic) # handle PIL Image if pic.mode == 'I': img = torch.from_numpy(np.array(pic, np.int32, copy=False)) elif pic.mode == 'I;16': img = torch.from_numpy(np.array(pic, np.int16, copy=False)) elif pic.mode == 'F': img = torch.from_numpy(np.array(pic, np.float32, copy=False)) elif pic.mode == '1': img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False)) else: img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes())) # PIL image mode: L, P, I, F, RGB, YCbCr, RGBA, CMYK if pic.mode == 'YCbCr': nchannel = 3 elif pic.mode == 'I;16': nchannel = 1 else: nchannel = len(pic.mode) img = img.view(pic.size[1], pic.size[0], nchannel) # put it from HWC to CHW format # yikes, this transpose takes 80% of the loading time/CPU img = img.transpose(0, 1).transpose(0, 2).contiguous() if isinstance(img, torch.ByteTensor): return img.float().div(255) else: return img
2.3 to_pil_image(pic, mode=None)
将 tensor
或 ndarray
转换为 PIL Image
def to_pil_image(pic, mode=None): """ Args: pic (Tensor or numpy.ndarray): Image to be converted to PIL Image. mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes Returns: PIL Image: Image converted to PIL Image. """ if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)): raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic))) elif isinstance(pic, torch.Tensor): if pic.ndimension() not in {2, 3}: raise ValueError('pic should be 2/3 dimensional. Got {} ' 'dimensions.'.format(pic.ndimension())) elif pic.ndimension() == 2: # if 2D image, add channel dimension (CHW) pic.unsqueeze_(0) elif isinstance(pic, np.ndarray): if pic.ndim not in {2, 3}: raise ValueError('pic should be 2/3 dimensional. Got {} ' 'dimensions.'.format(pic.ndim)) elif pic.ndim == 2: # if 2D image, add channel dimension (HWC) pic = np.expand_dims(pic, 2) npimg = pic if isinstance(pic, torch.FloatTensor): pic = pic.mul(255).byte() if isinstance(pic, torch.Tensor): npimg = np.transpose(pic.numpy(), (1, 2, 0)) if not isinstance(npimg, np.ndarray): raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' + 'not {}'.format(type(npimg))) if npimg.shape[2] == 1: expected_mode = None npimg = npimg[:, :, 0] if npimg.dtype == np.uint8: expected_mode = 'L' elif npimg.dtype == np.int16: expected_mode = 'I;16' elif npimg.dtype == np.int32: expected_mode = 'I' elif npimg.dtype == np.float32: expected_mode = 'F' if mode is not None and mode != expected_mode: raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}" .format(mode, np.dtype, expected_mode)) mode = expected_mode elif npimg.shape[2] == 4: permitted_4_channel_modes = ['RGBA', 'CMYK'] if mode is not None and mode not in permitted_4_channel_modes: raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes)) if mode is None and npimg.dtype == np.uint8: mode = 'RGBA' else: permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV'] if mode is not None and mode not in permitted_3_channel_modes: raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes)) if mode is None and npimg.dtype == np.uint8: mode = 'RGB' if mode is None: raise TypeError('Input type {} is not supported'.format(npimg.dtype)) return Image.fromarray(npimg, mode=mode)
2.4 normalize(tensor, mean, std)
归一化 tensor
的图像. in-place
计算.
def normalize(tensor, mean, std): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channely. Returns: Tensor: Normalized Tensor image. """ if not _is_tensor_image(tensor): raise TypeError('tensor is not a torch image.') # This is faster than using broadcasting, don't change without benchmarking for t, m, s in zip(tensor, mean, std): t.sub_(m).div_(s) return tensor
# example mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] img_normalize = normalize(img_tensor, mean, std) # vis ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(to_pil_image(img_normalize)) ax2.axis("off") ax2.set_title("normalize img") plt.show()
2.5 resize(img, size, interpolation=Image.BILINEAR)
对输入的 PIL Image 进行 resize 到给定尺寸.
参数 size 为调整后的尺寸.
如果 size 是数组(h, w),则直接调整到该 (h, w) 尺寸.
如果 size 是一个 int 值,则调整后图像的最短边是该值,且保持固定的长宽比.
def resize(img, size, interpolation=Image.BILINEAR): """ Args: img (PIL Image): Image to be resized. size (sequence or int): Desired output size. interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR`` Returns: PIL Image: Resized image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)): raise TypeError('Got inappropriate size arg: {}'.format(size)) if isinstance(size, int): w, h = img.size if (w <= h and w == size) or (h <= w and h == size): return img if w < h: ow = size oh = int(size * h / w) return img.resize((ow, oh), interpolation) else: oh = size ow = int(size * w / h) return img.resize((ow, oh), interpolation) else: return img.resize(size[::-1], interpolation)
# example: img_resize_256x256 = resize(img, (256, 256)) # (256, 256) img_resize_256 = resize(img, 256) # (256, 278) # vis ax1 = plt.subplot(1, 3, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 3, 2) ax2.imshow(img_resize_256x256) ax2.axis("off") ax2.set_title("resize_256x256 img") ax3 = plt.subplot(1, 3, 3) ax3.imshow(img_resize_256) ax3.axis("off") ax3.set_title("resize_256 img") plt.show()
2.6 pad(img, padding, fill=0, padding_mode=‘constant')
根据指定的 padding
模式和填充值,对给定的 PIL Image
的所有边进行 pad
处理.
参数 padding - int 或 tuple 形式.
padding:
- 如果是 int 值 ,则对所有的边都 padding 该 int 值.
- 如果是长度为 2 的tuple,则对 left/right 和 top/bottom 分别进行 padding.
- 如果是长度为 4 的 tuple,则对 left,top,right, bottom 边分别进行 padding.
参数 fill - 像素填充值,默认为 0. 如果值是长度为 3 的 tuple,则分别对 R,G,B 通道进行填充. 仅用于当 padding_mode='constant'
的情况.
参数 padding_mode - 填充的类型,可选:constant,edge,reflect,symmetric. 默认为 constant. 填充常数值.
constant - padding 填充常数值 fill.
edge - padding 图像边缘的最后一个值.
reflect - padding 图像的反射(reflection)值,(不对图像边缘的最后一个像素值进行重复)
如,[1, 2, 3, 4] 在 reflect 模式下在 两边 padding 2 个元素值,会得到:
[3, 2, 1, 2, 3, 4, 3, 2]
symmetric - padding 图像的反射(reflection)值,(对图像边缘的最后一个像素值进行重复).
如,[1, 2, 3, 4] 在 symmetric 模式下在 两边 padding 2 个元素值,会得到:
[2, 1, 1, 2, 3, 4, 4, 3]
def pad(img, padding, fill=0, padding_mode='constant'): """ Args: img (PIL Image): Image to be padded. padding (int or tuple): Padding on each border. fill: Pixel fill value for constant fill. Default is 0. padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. Returns: PIL Image: Padded image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) if not isinstance(padding, (numbers.Number, tuple)): raise TypeError('Got inappropriate padding arg') if not isinstance(fill, (numbers.Number, str, tuple)): raise TypeError('Got inappropriate fill arg') if not isinstance(padding_mode, str): raise TypeError('Got inappropriate padding_mode arg') if isinstance(padding, Sequence) and len(padding) not in [2, 4]: raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " + "{} element tuple".format(len(padding))) assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], 'Padding mode should be either constant, edge, reflect or symmetric' if padding_mode == 'constant': if img.mode == 'P': palette = img.getpalette() image = ImageOps.expand(img, border=padding, fill=fill) image.putpalette(palette) return image return ImageOps.expand(img, border=padding, fill=fill) else: if isinstance(padding, int): pad_left = pad_right = pad_top = pad_bottom = padding if isinstance(padding, Sequence) and len(padding) == 2: pad_left = pad_right = padding[0] pad_top = pad_bottom = padding[1] if isinstance(padding, Sequence) and len(padding) == 4: pad_left = padding[0] pad_top = padding[1] pad_right = padding[2] pad_bottom = padding[3] if img.mode == 'P': palette = img.getpalette() img = np.asarray(img) img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode) img = Image.fromarray(img) img.putpalette(palette) return img img = np.asarray(img) # RGB image if len(img.shape) == 3: img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode) # Grayscale image if len(img.shape) == 2: img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode) return Image.fromarray(img)
# example: img_padding = pad(img, (10, 20, 30 ,40), fill=128) # (750, 815) -> (790, 875) # vis ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_padding) ax2.axis("off") ax2.set_title("padding img") plt.show()
2.7 crop(img, i, j, h, w)
裁剪给定的 PIL Image.
def crop(img, i, j, h, w): """ Args: img (PIL Image): Image to be cropped. i: Upper pixel coordinate. j: Left pixel coordinate. h: Height of the cropped image. w: Width of the cropped image. Returns: PIL Image: Cropped image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) return img.crop((j, i, j + w, i + h))
# example img_crop = crop(img, 100, 100, 500, 500) # (750, 815) -> (500, 500) ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_crop) ax2.axis("off") ax2.set_title("crop img") plt.show()
2.8 center_crop(img, output_size)
def center_crop(img, output_size): if isinstance(output_size, numbers.Number): output_size = (int(output_size), int(output_size)) w, h = img.size th, tw = output_size i = int(round((h - th) / 2.)) j = int(round((w - tw) / 2.)) return crop(img, i, j, th, tw)
#example img_centercrop = center_crop(img, (256, 256)) # (750, 815) -> (256, 256) ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_centercrop) ax2.axis("off") ax2.set_title("centercrop img") plt.show()
2.9 resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR)
对给定 PIL Image 进行裁剪,并 resize 到特定尺寸.
def resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR): """ Args: img (PIL Image): Image to be cropped. i: Upper pixel coordinate. j: Left pixel coordinate. h: Height of the cropped image. w: Width of the cropped image. size (sequence or int): Desired output size. Same semantics as ``resize``. interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR``. Returns: PIL Image: Cropped image. """ assert _is_pil_image(img), 'img should be PIL Image' img = crop(img, i, j, h, w) img = resize(img, size, interpolation) return img
# example img_resizedcrop = resized_crop(img, 100, 100, 500, 500, (256, 256)) # (750, 815) -> (500, 500) -> (256, 256) ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_resizedcrop) ax2.axis("off") ax2.set_title("resizedcrop img") plt.show()
2.10 hflip(img)
水平翻转 (Horizontally flip) 给定的 PIL Image.
def hflip(img): """ Args: img (PIL Image): Image to be flipped. Returns: PIL Image: Horizontall flipped image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) return img.transpose(Image.FLIP_LEFT_RIGHT)
2.11 vflip(img)
垂直翻转 (Vertically flip) 给定的 PIL Image.
def vflip(img): """ Args: img (PIL Image): Image to be flipped. Returns: PIL Image: Vertically flipped image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) return img.transpose(Image.FLIP_TOP_BOTTOM)
# example: img_hflip = hflip(img) img_vflip = vflip(img) ax1 = plt.subplot(1, 3, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 3, 2) ax2.imshow(img_hflip) ax2.axis("off") ax2.set_title("hflip img") ax3 = plt.subplot(1, 3, 3) ax3.imshow(img_vflip) ax3.axis("off") ax3.set_title("vflip img") plt.show()
2.12 five_crop(img, size)
Crop the given PIL Image into four corners and the central crop.
从给定 PIL Image 的四个角和中间裁剪出五个子图像.
def five_crop(img, size): """ Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. Returns: tuple: tuple (tl, tr, bl, br, center) Corresponding top left, top right, bottom left, bottom right and center crop. """ if isinstance(size, numbers.Number): size = (int(size), int(size)) else: assert len(size) == 2, "Please provide only two dimensions (h, w) for size." w, h = img.size crop_h, crop_w = size if crop_w > w or crop_h > h: raise ValueError("Requested crop size {} is bigger than input size {}".format(size, (h, w))) tl = img.crop((0, 0, crop_w, crop_h)) tr = img.crop((w - crop_w, 0, w, crop_h)) bl = img.crop((0, h - crop_h, crop_w, h)) br = img.crop((w - crop_w, h - crop_h, w, h)) center = center_crop(img, (crop_h, crop_w)) return (tl, tr, bl, br, center)
# example: img_tl, img_tr, img_bl, img_br, img_center = five_crop(img, (400, 400)) ax1 = plt.subplot(2, 3, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(2, 3, 2) ax2.imshow(img_tl) ax2.axis("off") ax2.set_title("tl img") ax3 = plt.subplot(2, 3, 3) ax3.imshow(img_tr) ax3.axis("off") ax3.set_title("tr img") ax4 = plt.subplot(2, 3, 4) ax4.imshow(img_bl) ax4.axis("off") ax4.set_title("bl img") ax5 = plt.subplot(2, 3, 5) ax5.imshow(img_br) ax5.axis("off") ax5.set_title("br img") ax6 = plt.subplot(2, 3, 6) ax6.imshow(img_center) ax6.axis("off") ax6.set_title("center img") plt.show()
2.13 ten_crop(img, size, vertical_flip=False)
将给定 PIL Image 裁剪出的四个角和中间部分的五个子图像,每个子图像进行翻转处理. 默认时水平翻转.
def ten_crop(img, size, vertical_flip=False): """ Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. vertical_flip (bool): Use vertical flipping instead of horizontal Returns: tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip) Corresponding top left, top right, bottom left, bottom right and center crop and same for the flipped image. """ if isinstance(size, numbers.Number): size = (int(size), int(size)) else: assert len(size) == 2, "Please provide only two dimensions (h, w) for size." first_five = five_crop(img, size) if vertical_flip: img = vflip(img) else: img = hflip(img) second_five = five_crop(img, size) return first_five + second_five
2.14 adjust_brightness(img, brightness_factor)
def adjust_brightness(img, brightness_factor): """ Args: img (PIL Image): PIL Image to be adjusted. brightness_factor (float): How much to adjust the brightness. Can be any non negative number. 0 gives a black image, 1 gives the original image, 2 increases the brightness by a factor of 2. Returns: PIL Image: Brightness adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Brightness(img) img = enhancer.enhance(brightness_factor) return img
# example: img_adjust_brightness = adjust_brightness(img, 2.5) # vis ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_adjust_brightness) ax2.axis("off") ax2.set_title("adjust_brightness img") plt.show()
2.15 adjust_contrast(img, contrast_factor)
调整对比度.
def adjust_contrast(img, contrast_factor): """ Args: img (PIL Image): PIL Image to be adjusted. contrast_factor (float): How much to adjust the contrast. Can be any non negative number. 0 gives a solid gray image, 1 gives the original image, 2 increases the contrast by a factor of 2. Returns: PIL Image: Contrast adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Contrast(img) img = enhancer.enhance(contrast_factor) return img
# example: img_adjust_contrast = adjust_contrast(img, 2.5) # vis ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_adjust_contrast) ax2.axis("off") ax2.set_title("adjust_contrast img") plt.show()
2.16 adjust_saturation(img, saturation_factor)
调整颜色饱和度.
def adjust_saturation(img, saturation_factor): """ Args: img (PIL Image): PIL Image to be adjusted. saturation_factor (float): How much to adjust the saturation. 0 will give a black and white image, 1 will give the original image while 2 will enhance the saturation by a factor of 2. Returns: PIL Image: Saturation adjusted image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) enhancer = ImageEnhance.Color(img) img = enhancer.enhance(saturation_factor) return img
# example img_adjust_saturation = adjust_saturation(img, 2.5) # vis ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_adjust_saturation) ax2.axis("off") ax2.set_title("adjust_saturation img") plt.show()
2.17 adjust_hue(img, hue_factor)
调整图像 HUE.
通过将图像转换为 HSV 空间,并周期地移动在 hue 通道(H) 的强度,以实现图像 hue 的调整.
最后,再将结果转换回原始的图像模式.参数 hue_factor - H 通道平移的因子,其值必须在区间 [-0.5, 0.5].
def adjust_hue(img, hue_factor): """ Args: img (PIL Image): PIL Image to be adjusted. hue_factor (float): How much to shift the hue channel. Should be in [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in HSV space in positive and negative direction respectively. 0 means no shift. Therefore, both -0.5 and 0.5 will give an image with complementary colors while 0 gives the original image. Returns: PIL Image: Hue adjusted image. """ if not(-0.5 <= hue_factor <= 0.5): raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor)) if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) input_mode = img.mode if input_mode in {'L', '1', 'I', 'F'}: return img h, s, v = img.convert('HSV').split() np_h = np.array(h, dtype=np.uint8) # uint8 addition take cares of rotation across boundaries with np.errstate(over='ignore'): np_h += np.uint8(hue_factor * 255) h = Image.fromarray(np_h, 'L') img = Image.merge('HSV', (h, s, v)).convert(input_mode) return img
# example: img_adjust_hue = adjust_hue(img, 0.5) # vis ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_adjust_hue) ax2.axis("off") ax2.set_title("adjust_hue img") plt.show()
2.18 adjust_gamma(img, gamma, gain=1)
对图像进行伽马校正(gamma correction). 也被叫作 Power Law Transform.
def adjust_gamma(img, gamma, gain=1): """ Args: img (PIL Image): PIL Image to be adjusted. gamma (float): Non negative real number, 如公式中的 \gamma 值. gamma larger than 1 make the shadows darker, while gamma smaller than 1 make dark regions lighter. gain (float): The constant multiplier. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) if gamma < 0: raise ValueError('Gamma should be a non-negative real number') input_mode = img.mode img = img.convert('RGB') gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3 img = img.point(gamma_map) # use PIL's point-function to accelerate this part img = img.convert(input_mode) return img
# example: img_adjust_gamma = adjust_gamma(img, 0.5) # vis ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_adjust_gamma) ax2.axis("off") ax2.set_title("adjust_gamma img") plt.show()
2.19 rotate(img, angle, resample=False, expand=False, center=None)
旋转图像.
参数 resample
可选值:PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC.
如果参数 resample
被忽略,或图像的模式是 1 或 P,则resample=PIL.Image.NEAREST.
参数 expand
如果 expand=True,则延展输出图像,以能包含旋转后的全部图像.
如果 expand=False 或被忽略,则保持输出图像与输入图像的尺寸一致.
expand 假设旋转是以中心进行旋转,且没有平移.
def rotate(img, angle, resample=False, expand=False, center=None): """ Args: img (PIL Image): PIL Image to be rotated. angle (float or int): In degrees degrees counter clockwise order. resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional): expand (bool, optional): Optional expansion flag. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) return img.rotate(angle, resample, expand, center)
# example: img_rotate = rotate(img, 60) # vis ax1 = plt.subplot(1, 2, 1) ax1.imshow(img) ax1.axis("off") ax1.set_title("orig img") ax2 = plt.subplot(1, 2, 2) ax2.imshow(img_rotate) ax2.axis("off") ax2.set_title("rotate img") plt.show()
2.20 affine(img, angle, translate, scale, shear, resample=0, fillcolor=None)
保持图像中心不变,进行仿射变换.
def _get_inverse_affine_matrix(center, angle, translate, scale, shear): # Helper method to compute inverse matrix for affine transformation # As it is explained in PIL.Image.rotate # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1 # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1] # C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1] # RSS is rotation with scale and shear matrix # RSS(a, scale, shear) = [ cos(a)*scale -sin(a + shear)*scale 0] # [ sin(a)*scale cos(a + shear)*scale 0] # [ 0 0 1] # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1 angle = math.radians(angle) shear = math.radians(shear) scale = 1.0 / scale # Inverted rotation matrix with scale and shear d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle) matrix = [ math.cos(angle + shear), math.sin(angle + shear), 0, -math.sin(angle), math.cos(angle), 0 ] matrix = [scale / d * m for m in matrix] # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1 matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1]) matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1]) # Apply center translation: C * RSS^-1 * C^-1 * T^-1 matrix[2] += center[0] matrix[5] += center[1] return matrix def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None): """ Args: img (PIL Image): PIL Image to be rotated. angle (float or int): rotation angle in degrees between -180 and 180, clockwise direction. translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation) scale (float): overall scale shear (float): shear angle value in degrees between -180 to 180, clockwise direction. resample (``PIL.Image.NEAREST`` or ``PIL.Image.BILINEAR`` or ``PIL.Image.BICUBIC``, optional): fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0) """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) assert isinstance(translate, (tuple, list)) and len(translate) == 2, "Argument translate should be a list or tuple of length 2" assert scale > 0.0, "Argument scale should be positive" output_size = img.size center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5) matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear) kwargs = {"fillcolor": fillcolor} if PILLOW_VERSION[0] == '5' else {} return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)
2.21 to_grayscale(img, num_output_channels=1)
将图像转换为灰度图.
def to_grayscale(img, num_output_channels=1): """ Args: img (PIL Image): Image to be converted to grayscale. Returns: PIL Image: Grayscale version of the image. if num_output_channels = 1 : returned image is single channel if num_output_channels = 3 : returned image is 3 channel with r = g = b """ if not _is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) if num_output_channels == 1: img = img.convert('L') elif num_output_channels == 3: img = img.convert('L') np_img = np.array(img, dtype=np.uint8) np_img = np.dstack([np_img, np_img, np_img]) img = Image.fromarray(np_img, 'RGB') else: raise ValueError('num_output_channels should be either 1 or 3') return img
参考链接
https://www.aiuai.cn/aifarm759.html
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]